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Abstract

We provide an overview of the recent developments in normal theory stepwise multiple test
procedures for non-hierarchical families and describe several biometric applications where these
procedures are useful. c© 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this paper we provide an overview of normal theory multiple test procedures
(MTPs) based on Student t statistics and describe some of their biometric applications.
Normal theory MTPs have the advantage that they take into account the joint distri-
bution of the test statistics. There are analogs of these procedures based on p-values
associated with the individual test statistics which make no assumptions regarding the
joint distribution or the form of the test statistics. These procedures may be used when
the standard normal theory assumptions are not met and the test statistics are arbitrary.
We will mention these procedures, but will not discuss them in detail; see Tamhane
(1996) for a review of both normal theory and p-value-based procedures.
We describe normal theory MTPs for balanced designs in Section 3 and for unbal-

anced designs in Section 4. Biometric applications of the stepwise MTPs are described
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in Section 5. Some open problems and directions for future research are discussed in
Section 6.
It should be noted that this is a review paper and almost all of the procedures

described herein either have been published elsewhere or are in the publication process.
Because of this reason all mathematical proofs are omitted; the interested reader can
refer to source papers for these and additional details.

2. Preliminaries

Consider k¿2 null hypotheses, H1;H2; : : : ;Hk . We assume that the hypotheses form
a non-hierarchical family, i.e., no Hi implies any other Hj. The familywise error rate
(FWE) of an MTP is the probability that it rejects at least one true Hi. For a prespec-
i�ed signi�cance level �, an MTP is required to control its

FWE6�; (2.1)

under all partial null hypotheses HI =
⋂
i∈I Hi where I is any non-empty subset of

the index set {1; 2; : : : ; k}. This is called strong control of the FWE (Hochberg and
Tamhane, 1987). Strong control of the FWE is needed when we want to control
the probability of making any type I error, no matter how many of the k hypothe-
ses are true and how many are false. An MTP satisfying the strong control condition
will be referred to as an �-level MTP.
A useful concept is the multiplicity adjusted p-value for Hi, denoted by pai. It is

the largest signi�cance level at which Hi can be rejected for given data using a given
MTP. Once the pai are computed, the MTP can be applied at a speci�ed level � by
rejecting any hypothesis Hi with pai ¡ �.
MTPs can be divided into two broad categories: single-step procedures (SSPs) and

stepwise procedures (SWPs). SWPs can be further subdivided into step-down pro-
cedures (SDPs) and step-up procedures (SUPs). In an SSP the decision about any
hypothesis Hi does not depend on the decision about any other hypothesis Hj; there-
fore the hypotheses can be tested without reference to one another. In an SWP, on the
other hand, the hypotheses are tested in a speci�c order, generally determined by
the magnitudes of the test statistics or the associated p-values, pi, and the deci-
sions on them are made in a stepwise manner. The decisions on the earlier hy-
potheses in the order may a�ect those on the later hypotheses in the order. In an
SDP the hypotheses are tested beginning with the most signi�cant one and testing
continues until a hypothesis is not rejected (‘accepted’), at which point all the re-
maining hypotheses are accepted by implication without actually testing them. In an
SUP, on the other hand, the hypotheses are tested beginning with the least signi�-
cant one and testing continues until a hypothesis is rejected at which point all the
remaining hypotheses are rejected by implication without actually testing them. In
certain problems, e.g., dose �nding (see Section 5:3), the order of the hypotheses
for testing may be prespeci�ed rather than determined by the magnitudes of the test
statistics.
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3. Procedures for balanced designs

3.1. Distributional setup

Consider the standard normal theory general linear model setting with k estimable
parametric functions (typically contrasts among the treatment means), �1; : : : ; �k . Let
�̂1; : : : ; �̂k be their least-squares estimates. By a balanced design we mean that the �̂i
have equal variances and equal correlations. Speci�cally, we assume that the �̂i have
a joint k-variate normal distribution with

E(�̂i) = �i; var(�̂i) = �2�2 and corr(�̂i; �̂j) = � for all i 6= j; (3.1)

here �2 and � are known design-dependent constants, and �2 is an unknown experimen-
tal error variance. Let s2 be an estimate of �2 based on � degrees of freedom (d.f.) so
that the corresponding random variable (r.v.) S2 is distributed as �2�2� =� independently
of the �̂i.
Three examples of this setup are: (i) comparisons of treatments with a control in

a one-way layout (Dunnett, 1955, 1997) with an equal number, n, of observations on
each treatment and possibly a di�erent number, n0, of observations on the control;
(ii) orthogonal contrasts among the cell means corresponding to main e�ects and inter-
actions in a two-level factorial experiment with equireplicated cells; and (iii) a BTIB
design (Bechhofer and Tamhane, 1981) for comparing treatments with a control using
incomplete blocks.
We consider the following one-sided multiple hypotheses testing problem (the MTPs

for the two-sided testing problem are analogous and hence are not discussed here):

Hi: �i = 0 vs: Ai: �i ¿ 0 (16i6k):

The test statistics used to test the Hi are given by

ti =
�̂i

SE(�̂i)
=
�̂i
s�

(16i6k):

The r.v.’s Ti corresponding to the observed statistics ti individually have Student t
distributions and jointly have a k-variate t-distribution with common correlation � and
d.f. �. The subset of the Ti corresponding to the true Hi has a central t-distribution,
while the complementary subset has a noncentral t-distribution. Denote by t(�)k; �; �, the
upper � equicoordinate critical point of a central k-variate t-distribution with common
correlation � and d.f. �. Comprehensive tables of these critical constants are given in
Bechhofer and Dunnett (1988).

3.2. Single-step procedure (SSP)

We consider an �-level SSP that rejects any Hi for which

ti ¿ t(�)k; �; � (16i6k): (3.2)
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The adjusted p-values for this SSP are computed under the overall null hypothesis
H0 =

⋂k
i=1 Hi using the formula

pai = P
{
max
16j6k

Tj¿ti

}
(16i6k);

where T1; T2; : : : ; Tk have a central k-variate distribution with common correlation �
and d.f. �.
This SSP has associated with it the following 100(1 − �)% simultaneous lower

con�dence bounds on the �i:

�i¿�̂i − t(�)k; �; �s� (16i6k):

Thus another equivalent way of applying this SSP is to reject any Hi for which the
lower con�dence bound on �i is positive. These lower con�dence bounds are a special
case (for equal �) of the bounds given by Dunnett (1955); we shall use the more
general bounds in Section 4.2.
The corresponding p-value-based SSP is the conservative Bonferroni procedure which

rejects any Hi with pi ¡�=k. This is equivalent to replacing t(�)k; �; � in (3.2) by the

univariate t upper �=k critical point, t(�=k)� , which is larger.

3.3. Step-down procedure (SDP)

Marcus et al.’s (1976) closure method can be used to construct an �-level MTP as
follows: Reject any Hi i� every intersection hypothesis HJ =

⋂
j∈J Hj containing Hi is

rejected at level �. To apply this method, one needs an �-level test of every intersection
hypothesis HJ . If we use Roy’s (1953) union-intersection test of HJ which rejects at
level � if

max
j∈J

tj ¿ t(�)|J |; �; �;

where |J | denotes the cardinality of set J , the resulting MTP for making decisions on
the individual hypotheses Hi can be applied in a step-down manner. This SDP was
suggested earlier by Miller (1966, pp. 85–86) but without a proof or even a claim of
its strong FWE control property. The steps in this SDP are as follows:
Step 0: Order the test statistics ti: t(1)6t(2)6 · · ·6t(k). Let H(1);H(2); : : : ;H(k) be the

corresponding hypotheses.
Step 1: Reject H(k) if t(k)¿t(�)k; �; � and go to Step 2. Otherwise accept all hypotheses

and stop testing.
Step 2: Reject H(k−1) if t(k−1)¿t(�)k−1; �; � and go to Step 3. Otherwise accept

H(k−1); : : : ;H(1) and stop testing, etc.
In general, reject H(i) i� t(j)¿t(�)j; �; � for j = k; k − 1; : : : ; i.
The adjusted p-value for an ordered hypothesis H(i) is given by

pa(i) = max(p′
(k); p

′
(k−1); : : : ; p

′
(i));

where

p′
(m) = P{max(T1; : : : ; Tm)¿t(m)}
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and T1; T2; : : : ; Tm have a joint m-variate central equicorrelated t-distribution with
common correlation � and d.f. �.
Holm’s (1979) p-value-based SDP can be viewed as a Bonferroni approximation to

this SDP.

3.4. Step-up procedure (SUP)

Dunnett and Tamhane (1992a) proposed a step-up MTP in which the sequence of
testing is reversed from that of the SDP. The steps in this SUP are as follows:
Step 0: Order the test statistics ti: t(1)6t(2)6 · · ·6t(k). Let H(1);H(2); : : : ;H(k) be

the corresponding hypotheses. Choose critical constants c16c26 · · ·6ck as indicated
below.
Step 1: Accept H(1) if t(1)6c1 and go to Step 2. Otherwise reject all Hi and stop

testing.
Step 2: Accept H(2) if t(2)6c2 and go to Step 3. Otherwise reject H(2); : : : ;H(k) and

stop testing, etc.
In general, accept H(i) i� t(j)6cj for j = 1; 2; : : : ; i.
The critical constants c16c26 · · ·6ck are the solutions to the following equations:

Let (T1; T2; : : : ; Tk) have a central k-variate t-distribution with common correlation �
and d.f. �. Let T1;m6T2;m6 · · ·6Tm;m be the ordered values of T1; T2; : : : ; Tm. Then

P{T1;m6c1; : : : ; Tm;m6cm}= 1− � (16m6k): (3.3)

These equations can be solved recursively starting with m= 1 in which case c1 = t
(�)
� ,

the upper � critical point of univariate Student’s t. An algorithm for solving (3.3) is
given in Dunnett and Tamhane (1992a) where tables of the constants ci are provided
for selected values of k; �; � and �.
Numerical evaluation of powers reported in Dunnett and Tamhane (1993) shows that

if only a few hypotheses are false then the SDP is slightly more powerful than the
SUP, whereas if most hypotheses are false then the SUP is moderately more powerful
than the SDP.
The adjusted p-values for the SUP are calculated as follows: Set ci = t(i) and �nd

c1; : : : ; ci−1 such that

P{T1; j6c1; : : : ; Tj; j6cj}= 1− p′
(i) for j = 1; : : : ; i:

Then

pa(i) = min(p′
(1); p

′
(2); : : : ; p

′
(i)):

Hochberg’s (1988) p-value-based SUP can be viewed as a Bonferroni approximation
to this SUP.

3.5. Step-up–down procedure (SUDP)

The SDP begins by testing t(k) = tmax. This so-called MAX test answers the question
‘Can at least one hypothesis be rejected?’ If the answer to this question turns out
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to be a�rmative, then the SDP proceeds in a step-down manner to provide a further
resolution of this question by identifying the ‘rejectable’ hypotheses. The SUP begins
by testing t(1) = tmin. This so-called MIN test (Laska and Meisner, 1989) answers the
question ‘Can all hypotheses be rejected?’ If the answer to this question turns out to
be negative, then the SUP proceeds in a step-up manner to provide a further resolution
of this question by identifying the ‘acceptable’ hypotheses.
A generalization of the SDP and SUP can be obtained by posing the question ‘Can

at least q hypotheses be rejected?’ A test to answer this question can be based on the
statistic t(r) where r = k + 1 − q. The stepwise extension of this test proceeds in a
step-down or step-up manner depending on whether the result of the test is signi�cant
or not. We call the resulting stepwise procedure a step-up–down procedure (SUDP(r)),
where r is a prespeci�ed integer between 1 and k. This procedure is studied in Tamhane
et al. (1998). The SUP and SDP are special cases of SUDP(r) for q = k; r = 1 and
q= 1; r = k, respectively.
The steps in SUDP(r) are as follows:
Step 0: Order the test statistics ti: t(1)6t(2)6 · · ·6t(k). Let H(1);H(2); : : : ;H(k) be

the corresponding hypotheses. Choose critical constants c16c26 · · ·6ck as indicated
below.
Step 1 (a): If t(r)6cr then accept H(1);H(2); : : : ;H(r) and go to General Step (a).
Step 1 (b): If t(r)¿cr then reject H(r);H(r+1); : : : ;H(k) and go to General Step (b).
General Step (a): Let H(m) denote the last accepted hypothesis (at Step 1 (a), m=r).

If m = k then stop testing; otherwise proceed as in the SUP and test H(m+1). If
t(m+1)¿cm+1 then reject H(m+1);H(m+2); : : : ;H(k) and stop testing. If t(m+1)6cm+1 then
accept H(m+1). Set m= m+ 1 and return to the beginning of this step.
General Step (b): Let H(m) denote the last rejected hypothesis (at Step 1 (b), m=r).

If m = 1 then stop testing; otherwise proceed as in the SDP and test H(m−1). If
t(m−1)6cm−1 then accept H(m−1);H(m−2); : : : ;H(1) and stop testing. If t(m−1)¿cm−1
then reject H(m−1). Set m= m− 1 and return to the beginning of this step.
It is shown in Tamhane et al. (1998) that the critical constants of SUDP(r) which

satisfy (2.1) are given by the following: For m=1; 2; : : : ; r, choose cm= t
(�)
m; �; �, and for

m¿r, determine the cm recursively from the equation

P(Tr;m6t(�)r; �; �; Tr+1;m6cr+1; : : : ; Tm;m6cm) = 1− �;
where T1;m6T2;m6 · · ·6Tm;m are the order statistics of T1; T2; : : : ; Tm, which have a
central m-variate t distribution with common correlation � and d.f. �. Table 1 gives the
critical constants of SUDP(r) for k = 5; �=∞; �= 0:5; �= 0:05 and for r = 1; 2; : : : ; 5.
Note that for r=1 the critical constants coincide with those of the SUP and for r=5
they coincide with those of the SDP.
Another way to view this generalization is as follows. Let us suppose that the actual

numbers of true and false hypotheses, p and q=k−p, are known. Among all SUDP(r)
for r = 1; : : : ; k, which procedure is the most powerful? As noted earlier, if q is small
(e.g., q = 1) then the SDP is more powerful than the SUP, while if q is large (e.g.,
q = k) then the SUP is more powerful than the SDP. It can be shown that SUDP(r)
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Table 1
Critical Constants for SUDP(r) for k = 5; � =∞; � = 0:5; � = 0:05

Procedure c1 c2 c3 c4 c5

SUDP(1) 1.645 1.933 2.071 2.165 2.237
SUDP(2) 1.645 1.916 2.068 2.164 2.237
SUDP(3) 1.645 1.916 2.062 2.164 2.236
SUDP(4) 1.645 1.916 2.062 2.160 2.236
SUDP(5) 1.645 1.916 2.062 2.160 2.234

with r=p+1= k +1− q is the most powerful procedure. Power studies by Tamhane
et al. (1998) show that if p¿ 0 then the SUP su�ers only a small loss in power
in comparison to the most powerful SUDP(r). On the other hand, if p = 0 then the
SUP = SUDP(1) is the most powerful procedure and SUDP(2); : : : ;SUDP(k) su�er a
larger loss in power in comparison to the SUP. Since p and q are unknown, the SUP
may be regarded as the preferred procedure since it minimizes the maximum loss in
power in comparison to the most powerful SUDP(r) for any r = p+ 1.

4. Procedures for unbalanced designs

4.1. Distributional setup

By an unbalanced design we mean that the distributional setup is the same as in
Section 3.1 except that the �̂i have possibly unequal variances and unequal correlations.
In other words, instead of (3.1) we have

E(�̂i) = �i; var(�̂i) = �2i �
2 and corr(�̂i; �̂j) = �ij for all i 6= j; (4.1)

here �2i and �ij are known design-dependent constants.

Example. A common example of this setup is the one-way layout for comparing treat-
ments with a control in which the sample sizes of the treatment groups are not all
equal. Speci�cally, let n0 be the sample size of the control group and let ni be the
sample size of the ith treatment group (16i6k). Assume that the observations in
the ith group are independent and normally distributed with mean �i and a common
variance �2 (06i6k), and observations in di�erent groups are independent of each
other. Let �y i be the sample mean for the ith group and let s

2 be the mean-square error
estimate of �2 with �=

∑k
i=0 ni − (k +1) d.f. The contrasts of interest are �i = �i − �0

and their least-squares estimates are �y i − �y 0 (16i6k). Then

�2i =
1
n0
+
1
ni

and �ij =
√

ni
n0 + ni

√
nj

n0 + nj
(16i 6= j6k): (4.2)

The t statistics for testing the hypotheses Hi are given by

ti =
�̂i

SE(�̂i)
=
�̂i
s�i

(16i6k):
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4.2. Single-step procedure (SSP)

The SSP remains unchanged from its description in Section 3.2 except that instead
of the upper � critical point, t(�)k; �; �, of an equicorrelated (with common correlation �)
k-variate t-distribution, we use the critical point of an unequally correlated k-variate
t-distribution with correlation matrix Rk = {�ij}, denoted by t(�)k;�;Rk . The 100(1 − �)%
simultaneous con�dence lower bounds on the �i associated with this SSP are given by

�i¿�̂i − t(�)k; �; Rk s�i (16i6k):

Although the correlations are unequal, it is not unduly burdensome to compute
t(�)k; �; Rk using the program by Dunnett (1989) which exploits the product correlation
structure indicated in (4.2). This algorithm calculates multivariate normal probabili-
ties over rectangular regions. The Fortran code for this algorithm is available on Web
site http:==stat.lib.cmu.edu=apstat which also includes the code for doing the additional
integration required to uncondition over S=�. For arbitrary correlations, instead of
Dunnett’s algorithm, Schervish’s (1984) algorithm can be used which is also avail-
able on the same Web site. However, it requires much more computing time unless k
is small. A very good approximation to t(�)k; �; Rk can be obtained by replacing the �ij by
their arithmetic average.

4.3. Step-down procedure (SDP)

Dunnett and Tamhane (1991) proposed that the SDP be carried out as before except
that for testing t(m) use the critical constant t

(�)
m; �; Rm , which is the upper � point of an

m-variate central t-distribution with � d.f. and correlation matrix Rm corresponding to
the m smallest t-statistics (m=k; k−1; : : : ; 1). In the above example of comparisons with
a control in an unbalanced one-way layout, if n(1); n(2); : : : ; n(k) denote the sample sizes
associated with the treatment groups yielding the ordered statistics t(1)6t(2)6 · · ·6t(k),
respectively, then the (i; j)th entry of Rm is

�ij =
√

n(i)
n0 + n(i)

√
n(j)

n0 + n(j)
:

Note that the critical constants used by this modi�ed SDP depend on the observed
ordering of the t-statistics. Conditional on this observed ordering, the r.v.’s associated
with t(1); : : : ; t(m) are not jointly t-distributed. As a result, the choice of t

(�)
m; �; Rm for critical

constants may not control the FWE, although the simulations performed by Dunnett and
Tamhane (1995) suggested that it does. Liu (1996) pointed out that since this ordering
is random, the critical constants should be determined by taking the maximum of the
cm-values for each m over all possible orderings, ti16ti26 · · ·6tik , of the t-statistics,
where cm denotes the critical constant for testing t(m). In other words, if {i1; i2; : : : ; im}
denotes any subset of {1; 2; : : : ; k} then cm must satisfy

min
16i1¡···¡im6k

P{max(Ti1 ; : : : ; Tim)6cm}= 1− � (16m6k);
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where Ti1 ; : : : ; Tim have a central m-variate t-distribution with � d.f.; the correlation
matrix of this distribution is the submatrix corresponding to the indices i1; i2; : : : ; im
of the k × k correlation matrix of T1; T2; : : : ; Tk . Clearly, c1 = t(�)� , but for m¿ 1, the
determination of the cm-values using this approach presents a formidable computational
task. However, for the above example of comparisons with a control in an unbalanced
one-way layout, Liu (1996) showed that, in order to guarantee the FWE requirement
(2.1), the least favorable ordering (in terms of maximizing cm for m = 1; 2; : : : ; k) is
obtained when the ordered t-statistics, ti16ti26 · · ·6tik , correspond directly with the
ordered sample sizes, ni16ni26 · · ·6nik . Therefore, the critical constants required to
control the FWE should be determined by assuming the n’s in the order n16n26 · · ·6nk
(which is the least favorable case) instead of the order associated with the ordered
t-statistics.
Although it is possible that the modi�cation of the SDP proposed in Dunnett and

Tamhane (1991) for unbalanced designs may fail to control the FWE in some cases,
our simulations indicate that any excess in FWE over the nominal value is likely to
be quite small. On the other hand, Liu’s (1996) modi�cation tends to be conservative
in general, besides being computationally burdensome. Therefore, if the possibility of
small excesses in the FWE can be tolerated then our modi�cation may be a preferred
practical alternative.

4.4. Step-up procedure (SUP)

Dunnett and Tamhane (1995) proposed a modi�cation of the SUP for unbalanced
designs analogous to their modi�cation of the SDP, which involves computation of
the critical constants based on the observed ordering of the t-statistics. This modi-
�ed SUP su�ers from the same drawback in that it may not control the FWE in all
cases. Grechanovsky and Pinsker (1996) have constructed some counterexamples to
demonstrate this fact.
Liu (1996) proposed the same approach as that for the SDP to determine the critical

constants of the SUP for unbalanced designs, i.e., �nd the maximum of the critical
constants to control the FWE over all possible orderings of the t-statistics. Unfortu-
nately, this computational problem does not simplify as it does in the case of the SDP
for the example of comparisons with a control in an unbalanced one-way layout. In
particular, the ordering of the ti, ti16ti26 · · ·6tik , corresponding to the ordered sample
sizes, ni16ni26 · · ·6nik , is not necessarily least favorable for the SUP. Our recom-
mendation therefore is to use Dunnett and Tamhane’s (1995) modi�ed SUP since it is
only in exceptional cases that it fails to control the FWE, and that too by fairly small
amounts.

4.5. Step-up–down procedure (SUDP)

The critical constants of SUDP(r) can be calculated by employing similar methods
to those used for the SDP in Dunnett and Tamhane (1991) and for the SUP in Dunnett
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and Tamhane (1995). As noted before, these methods do not guarantee control of the
FWE under all con�gurations, but any excesses over the nominal value � are likely to
be quite small. Suppose that the hypotheses are labelled so that t16t26 · · ·6tk . Let
T1; T2; : : : ; Tk be the corresponding r.v.’s; note that the Ti are not ordered. Let Rm be
the correlation matrix corresponding to the r.v.’s T1; T2; : : : ; Tm. Then for �xed r, the
critical constants, cm for m = 1; 2; : : : ; r are given by cm = t

(�)
m; �; Rm where t

(�)
m; �; Rm is the

upper � equicoordinate critical point of the central m-variate t distribution with � d.f.
and correlation matrix Rm. For m¿r, the critical constants can be found recursively
from the equation

P(Tr;m6t
(�)
r; �; Rm ; Tr+1;m6cr+1; : : : ; Tm;m6cm) = 1− �;

where T1;m6T2;m6 · · ·6Tm;m are the order statistics of T1; T2; : : : ; Tm, which have a
central m-variate t distribution with � d.f. and correlation matrix Rm.

5. Biometric applications

5.1. Comparisons of treatments with a control

As alluded to earlier, the most common application of the MTPs discussed in this
paper is to the classical problem of comparisons of test treatments with a control to
determine which treatments are more e�ective than the control, and to select one of
them. Let �0 denote the mean response of the control and �i that of the ith treatment.
The hypotheses to be tested are

Hi: �i − �060 vs: Ai: �i − �0¿ 0 (16i6k); (5.1)

assuming that a larger response indicates higher e�cacy. We will assume the one-way
layout setting of the example in Section 4, in which case the �i and the �ij are known
quantities, being functions of the group sample sizes as given in (4.2). The SSP may
be used in this case if simultaneous con�dence bounds are desired on all �i − �0.
Otherwise the SDP or SUP are more powerful alternatives, with the SUP being the
preferred choice if there is no prior knowledge about how many hypotheses are false.
D’Agostino and Heeren (1991) discussed the e�cacy evaluation of an over-the-

counter test drug where the testing problem (5.1) arises in a di�erent context. The
�rst objective in the e�cacy evaluation is to demonstrate the sensitivity of the study
by checking whether the study can detect that k¿2 known active treatments (standard
drugs) are more e�ective than the placebo control. D’Agostino and Heeren stipulated
that all the active treatments must be shown to be e�ective (i.e., all the Hi must be
rejected) in order for the study to be regarded as sensitive and suggested the use of the
SSP; Dunnett and Tamhane (1992b) as well as some discussants of the D’Agostino–
Heeren paper pointed out that the correct test to use for this stipulation is the MIN test
of Laska and Meisner (1989). If the MIN test fails to reject all hypotheses, the active
treatments which fail to show e�cacy may be identi�ed using the SUP. One could
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then investigate the reasons for their failure which could be losses in sample sizes or
lack of compliance with the protocol. If the stipulated requirement for the study to
be regarded as sensitive is modi�ed as at least q out of k active treatments be shown
e�ective then SUDP(r) with r = k + 1− q may be used.
After the sensitivity of the study is established, the next step is to demonstrate the

e�cacy of the test drug with respect to the placebo control. This is a single test.
Finally, once the e�cacy of the test drug is demonstrated for its regulatory approval, it
may be of interest to the sponsor for marketing purposes to determine if their test drug
is more e�ective than any of the standard drugs. Here the appropriate MTP to use is
the SDP or the SUP depending on the sponsor’s prior expectation of whether the test
drug would be more e�ective than only a few standards or most standards, respectively.
If simultaneous con�dence intervals on the e�cacy di�erences between the test and
standard drugs are desired then the SSP must be used. Dunnett and Tamhane (1992b)
argued that, although three di�erent testing problems are addressed in this e�cacy
evaluation, a separate familywise � level may be used for each.
Another related problem is that of the evaluation of a combination drug by comparing

it to all of its subcombinations. Here the combination drug is the control with �0 being
its mean response and �i is the mean response of the ith subcombination. The hypothe-
ses are reversed from (5.1): they are Hi: �i−�0¿0 vs. Ai: �i−�0¡ 0 (16i6k). If the
combination drug must be shown to be more e�ective than all of its subcombinations
in order for it to be acceptable then the MIN test may be used. If the requirement
is relaxed to allow for the combination to be more e�ective than at least q out of k
subcombinations then SUDP(r) with r = k + 1− q may be used.

5.2. Dose �nding

A typical dose-�nding problem involves comparing k¿2 increasing dose levels of a
chemical compound and a zero dose level with respect to a certain response. Label the
dose levels 0; 1; : : : ; k and let �0; �1; : : : ; �k denote the corresponding mean responses.
For simplicity, consider a balanced one-way layout with an equal number, n, of ob-
servations at each dose level (including the zero dose level). Denote by �y 0; �y 1; : : : ; �y k
the sample means and by s2 the mean square error estimate of the experimental error
variance, �2, with �= (k + 1)(n− 1) d.f.
Assume that the �i are ordered:

�06�16 · · ·6�k : (5.2)

The goal is to �nd the lowest dose level for which the response �i exceeds �0 by a
prespeci�ed threshold amount, �¿0. Without loss of generality we take �= 0. When
the response is the e�cacy of the compound, this dose is referred to as the minimum
e�ective dose (MED) de�ned as

MED =min{i: �i ¿�0}:
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Following Ruberg (1989), Tamhane et al. (1996) formulated the problem of identi-
fying the MED as the following multiple hypotheses testing problem:

Hi: �0 = �1 = · · ·= �i vs: Ai: �0¡�i (16i6k): (5.3)

Note that the hypotheses Hi form a closed family since Hi implies Hj if i¿ j. These
hypotheses can be tested either in a step-up or step-down manner. The estimated MED
(sometimes referred to as the minimum detectable dose or the MDD) is given by the
�rst rejected hypothesis when using a step-up MTP and by the last rejected hypothesis
when using a step-down MTP.
A variety of test statistics can be used to test the hypotheses. One class of statistics

is based on testing the signi�cance of contrasts

Ci =
k∑
j=0

cij �yj (16i6k);

using the t-statistics

ti =
Ci

SE(Ci)
=

Ci

s
√
1=n

∑k
j=0 c

2
ij

(16i6k);

here
∑k

j=0 cij=0 for each set of contrast coe�cients, {ci0; ci1; : : : ; cik}. Sets of contrast
coe�cients can be chosen in di�erent ways. Which choice gives a more powerful MTP
depends on the unknown shape of the dose response function and the true value of the
MED.
The simulations performed by Tamhane et al. (1996) showed that for the types of

dose response functions considered, SDPs are generally at least as powerful as SUPs.
Two SDPs were considered for each set of contrasts: SDP1 was the same as the SDP
of Section 3.3 which used the statistic max16i6m ti for testing Hm with the critical
value t(�)m;�;1=2 for m = k; k − 1; : : : ; stopping the �rst time a hypothesis is not rejected.
SDP2 used the statistic ti for testing Hi comparing it with the univariate t upper �
point, t(�)� , stopping the �rst time a hypothesis is not rejected. SDP1 was generally
found to be more powerful.
Dunnett and Tamhane (1998) studied additional SDPs for the above dose-�nding

problem. Using simulations they found that SDP2 based on Bartholomew’s (1959a,
b) test generally has the highest power. Unfortunately, its critical points are di�cult
to obtain for unbalanced designs. A simpler alternative that achieves almost the same
powers is another SDP based on the so-called step contrasts. Speci�cally, beginning
with m = k, this SDP tests Hm by comparing the average of �ym−r+1; : : : ; �ym with
the average of �y 0; �y 1; : : : ; �ym−r for r = 1; : : : ; m, and rejects Hm if the maximum of
the m t-statistics for these contrasts exceeds the upper � point of the m-variate central
t-distribution with the correlation matrix determined by the contrast coe�cients. Testing
continues in this manner as long as rejection occurs, reducing m by one at each step.
Bauer (1997) showed that only the pairwise contrasts: Ci = �y i − �y 0, when used

in SDP1 and SDP2 control the type I FWE regardless of whether the monotonicity
condition (5.2) is satis�ed or not. All other contrasts can lead to excessive type I and



A.C. Tamhane, C.W. Dunnett / Journal of Statistical Planning and Inference 82 (1999) 55–68 67

type II error probabilities if that condition is not satis�ed. However, pairwise contrasts
do not exploit any prior knowledge about the shape of the dose response function, and
hence are not very powerful. This dilemma is not yet resolved.

6. Concluding remarks

As seen in this review, considerable progress has been made in recent years in the
development of stepwise MTPs, both normal theory based and p-value based. Many
open problems still remain, however. A few of these are briey discussed below in no
particular order.

1. It is necessary to extend the normal theory procedures to the case of unequal group
variances. A Welch–Satterthwaite-type approximation can be used for the distribu-
tions of the test statistics, but the details of the methods need to be worked out and
the accuracy of the approximations with regard to control of the FWE needs to be
checked.

2. It is also necessary to extend the normal theory procedures to the case of unknown
and unequal correlations between the test statistics. This extension will be useful
for dealing with the problem of comparing a treatment group with a control group
on multiple endpoints.

3. In many biometric studies the response is binary (success=failure) and the parameter
of interest is the probability of success. It would be of a great practical value to
develop appropriate MTPs for the binomial distribution model which may be used
in this case. The work of Neuh�auser and Hothorn (1997) should prove very useful
for this extension. The p-value-based MTPs, although applicable, may not be very
powerful because they do not exploit the information about the joint distributions
of the test statistics.

4. In some toxicology dose-response studies, the response is ordinal rather than numer-
ical, e.g., the scale 0;+;++;+++ used for pathological �ndings. A suitable model
needs to be developed for formulating the dose-�nding problem in this setting and
appropriate MTPs need to be developed.

It is hoped that the present review will give an impetus to the researchers to
investigate these and other problems.
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